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Climate – what is it?

“Climate is what you expect. Weather is what you get.” 1

There are many questions regarding climate whose answers
remain elusive.

For example, there is the question of determinism; was it
somehow inevitable at some earlier time that the climate now
would be as it actually is?

An almost intransitive system is one that can undergo two or more distinct
types of behaviour, and will exhibit one type for a long time, but not
forever. What can we say about stochastic “almost intransitive systems”?

1Lorenz, E. N., 1995: Climate is what you expect. Unpublished, available at
http://eaps4.mit.edu/research/Lorenz/Climate_expect.pdf

Lorenz, E. N., 1976: Nondeterministic theories of climatic change.
Quaternary Research, 6(4), 495-506.

Daron, J.D. and Stainforth, D.A., 2013. On predicting climate
under climate change. Environmental Research Letters, 8(3), p.034021.
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Right . . . OK, what is Kelvin’s theorem for the climate?

 
 
 
 
 
 

 

Q1: What do you mean by circulation?

A1: As usual, circulation means, “integral of the momentum per unit mass
(a 1-form) around a closed loop moving with the fluid velocity”.

A2: Ah! Circulation would still be defined by the same formula, but now
the loop would be moving with the fluid along the expected path in an
ensemble of stochastic Lagrangian paths responding to Newton’s Law?

Q3: Ah! So the expectation of the drift velocity of the stochastic ensemble
of path velocities would be taken at fixed Lagrangian label on the loop?

Q4: And the expected loop would stay together even as an ensemble of
stochastic paths with a shared expected drift velocity because the
flow map preserves neighbours? Would that work?
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Intuition solves problems by envisioning the solution.
What would a stochastic Lagrangian trajectory look like?
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A Stochastic Kelvin Circulation Theorem with a
Lagrangian Averaged (LA) Drift Velocity [DHL19]

Suppose the divergence-free advection velocity is the stochastic process
with a Lagrangian Averaged drift velocity?

ũ := E [u] (x , t) dt︸ ︷︷ ︸
EXPECTED DRIFT

+
∑
k

ξk(x) ◦ dWk(t)︸ ︷︷ ︸
NOISE

, div ũ = 0.

Let v = momentum/mass. (In Hamilton’s principle, v = D−1δ`/δu.)

The stochastic Kelvin circulation theorem represents Newton’s law
for the evolution of momentum concentrated on an advecting loop

d

∮
c(ũ)

v · dx =

∮
c(ũ)

(d + Lũ)(v · dx)︸ ︷︷ ︸
By KIW formula

=

∮
c(ũ)

f · dx︸ ︷︷ ︸
Newton′s Law
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The Lagrangian Averaged (LA) SALT equations

The SALT equations introduced earlier read, with ( δ`δu ∈ X∗, δ`
δa ∈ V ),

d
δ`

δu
+ Ldxt

δ`

δu
X∗
=
δ`

δa
� a dt and da + Ldxta

V ∗
= 0,

where dxt := ut(xt) dt + ξ(xt) ◦ dWt is a stochastic transport vector field.
Now, let’s replace the Eulerian drift velocity ut(x) in the stochastic
transport vector field dxt by its expectation, denoted as E [ut ] (x), so that

dXt := E [ut ] (x)dt +
∑
k

ξ(k)(x) ◦ dW (k)
t

and let’s consider the following modified Euler–Poincaré equations

d
δ`

δu
+ LdXt

δ`

δu
X∗
= E

[
δ`

δa

]
� a dt and da + LdXta

V ∗
= 0 .

The above equations comprise the class of LA SALT theories.
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Hamiltonian LA SALT, same Lie–Poisson matrix operator

We pass from the Lie–Poisson form of the SALT equations to the
corresponding LA SALT form by setting

δ(dh)

δµ
= dXt = E

[
δh

δµ

]
dt+

∑
k

ξ(k)◦dW (k)
t and E

[
δH

δa

]
= −E

[
δ`

δa

]
.

Taking these expectations transforms the LA SALT equations from their
Euler–Poincaré form above into their Hamiltonian form with the same
Lie–Poisson matrix operator, as

d

µ
a

 = −

ad∗( · )µ ( · ) � a

L( · )a 0

E [δh/δµ] dt +
∑

k ξ
(k) ◦ dW (k)

t

E [δh/δa] dt

 .
Since the Lie–Poisson matrix operators for DALT, SALT and LA SALT are
the all the same, they share the same Casimirs
and Lagrangian invariants!
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The LA SALT expectation dynamics separates & closes

Upon converting LA SALT from Stratonovich into Itô form, we find

dµ+ L
E
[
δH
δµ

]µdt + Lξ(k)µdW
(k)
t =

(
1
2

∑
k

Lξ(k)(Lξ(k)µ)dt − E
[
δH

δa

]
� a
)
dt ,

da + L
E
[
δH
δµ

]adt + Lξ(k)adW
(k)
t =

1
2

∑
k

Lξ(k)(Lξ(k)a)dt .

Applying the expectation to these equations yields the PDE sub-system,

∂tE [µ] + L
E
[
δH
δµ

]E [µ]− 1
2

∑
k

Lξ(k)(Lξ(k)E [µ]) = −E
[
δH

δa

]
� E [a] ,

∂tE [a] + L
E
[
δH
δµ

]E [a]− 1
2

∑
k

Lξ(k)(Lξ(k)E [a]) = 0 .

This sub-system of PDEs for the expectation variables will be closed in
certain cases of physical interest, some of which we will discuss later.
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Interim summary

The nonlocality in probability space (à la McKean) in the LA SALT
equations simplifies the dynamics of SALT in three significant ways.

(1) The Casimirs are still preserved by the full LA SALT dynamics, while
the equations for the expected physical variables separate into a dissipative
sub-system embedded into the larger conservative system.

(2) In many cases (including for the LA SALT incompressible Euler fluid)
the fluctuation equations are linear stochastic equations whose solutions
are transported and accelerated by forces involving the expected variables.

(3) In some cases, such as the 2D LA SALT Euler–Boussinesq (EB)
equations, this linear stochastic transport property implies unique global
existence, which is not possessed by the EB SALT equations.
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Fluctuation dynamics

The fluctuation variables are defined as

µ′ := µ− E[µ] ∈ X∗, a′ := a− E[a] ∈ V .

Taking the difference between the Itô forms and the expectation equations
yields the Itô fluctuation equations

dµ′ + L
E
[
δh
δµ

]µ′dt + Lξ(k)µ dW
(k)
t =

(
1
2

∑
k

Lξ(k)(Lξ(k)µ′)− E
[
δh

δa

]
�a′
)
dt,

da′ + L
E
[
δh
δµ

]a′dt + Lξ(k)a dW
(k)
t =

1
2

∑
k

Lξ(k)(Lξ(k)a′)dt .

We pair these two equations with their corresponding dual variables to
obtain stochastic evolution equations for the resulting quadratic quantities.
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Fluctuation variance dynamics

We then take expectation and integrate in space to find variance equations

1

2

d

dt
E
[
|µ′|2X

]
−
〈
E
[
Lµ′]µ

′
]
, E
[
δH

δµ

]〉
X

+

〈
E
[
Lµ′]a

′
]
, E
[
δH

δa

]〉
X

= −1

2

∑
k

〈
E

[
Lµ′](Lξ(k)µ′) + L(

L
ξ(k)µ

)]µ
]
, ξ(k)

〉
X

,

1

2

d

dt
E
[
|a′|2V

]
−
〈
E
[
â′ � a

]
, E
[
δH

δµ

]〉
X

= −1

2

∑
k

〈
E
[
â′ � (Lξ(k)a′) + L̂ξ(k)a � a

]
, ξ(k)

〉
X
,

where µ
′] ∈ X is dual to µ

′ ∈ X∗ and â′ ∈ V ∗ is dual to a ∈ V .
• The dynamics of the variances of the stochastic system is driven by an
intricate variety of correlations among the evolving fluctuation variables.
• The solution behaviour can be seen more easily in examples.
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Analytical results for LA SALT Euler

The LA SALT Euler equation is given as

dut + LTE[ut ]
utdt +

∑
k

LT
ξ(k)ut ◦ dW

(k)
t = (−E[∇pt ] + ft)dt,

with divE [ut ] = 0, ut |t=0 = u0(x) and (LTv ut)i := v j∂jui + (∂iv
j)uj .

The Itô formulation is, with divut = 0,

dut+LTE[ut ]
utdt+

∑
k

LT
ξ(k)utdW

(k)
t =

(
1
2

∑
k

LT
ξ(k)(LTξ(k)ut)−E [∇pt ]+ft

)
dt.

Taking the expectation yields a closed equation for v = E [ut ] given by

∂tv + LTv v =
1
2

∑
k

LT
ξ(k)

(
LT
ξ(k)v

)
− E [∇pt ] + ft .

Thus, v = E [ut ] obeys the Lie-Laplacian Navier-Stokes equation (LL NS).

Theorem

When LL NS is well-posed, then so is the linear Itô fluctuation equation.

D. D. Holm (Imperial College London) LA SALT CliMathParis IHP 2019 12 / 33



2D LA SALT Euler

The vorticity in 2D LA SALT, understood as a scalar, is governed by the
transport law with divE [ut ] = 0 = div ξ(k)(x),

dωt + E [ut ] · ∇ωtdt +
∑
k

ξ(k)(x) · ∇ωt ◦ dW (k)
t = 0.

This equation implies ∫
φ(ωt)dx =

∫
φ(ω0)dx ,

for any differentiable function φ.

In particular, one may choose φ(x) = xp and find that all of the Lp-norms
of the solution are conserved by the dynamics of 2D LA SALT Euler.
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Itô form of 2D LA SALT Euler

In Itô form, 2D LA SALT Euler is given by

dωt + E [ut ] · ∇ωtdt +
∑
k

ξ(k)(x) · ∇ωtdW
(k)
t

=
1
2

∑
k

ξ(k)(x) · ∇
(
ξ(k)(x) · ∇ωt

)
dt.

Its expectation is given by

∂tE [ωt ] + E [ut ] · ∇E [ωt ] =
1
2

∑
k

ξ(k)(x) · ∇
(
ξ(k)(x) · ∇E [ωt ]

)
dt.

Its fluctuations obey

dω′t + E [ut ] · ∇ω′tdt +
∑
k

ξ(k)(x) · ∇ωtdW
(k)
t

=
1
2

∑
k

ξ(k)(x) · ∇
(
ξ(k)(x) · ∇ω′t

)
dt.
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2D LA SALT Euler vorticity variance dynamics

We now want to investigate the dynamics of the variance of the vorticity:∫
E
[
|ω′t |2

]
dxdy =

∫
E
[
|ωt |2

]
dxdy −

∫ ∣∣E [ωt ]
∣∣2dxdy .

The first term on the right is the enstrophy Casimir, which is constant, so∫
|ωt |2dxdy =

∫
|ω0|2dxdy ⇒

∫
E
[
|ωt |2

]
dxdy =

∫
E
[
|ω0|2

]
dxdy .

The second term on the right of the variance formula satisfies

1

2

d

dt

∫ ∣∣E [ωt ]
∣∣2dx = −

∑
k

∫
|ξ(k) · ∇E [ωt ] |2dx ,

which means that magnitude |E [ωt ] | of the expected vorticity will decay
to zero in the absence of forcing, provided that {ξ(k)}k∈N span R3.

Remark

2D LA SALT dissipates the enstrophy of the mean vorticity by converting
it into fluctuations. Thereby, the variance of the vorticity increases under
2D LA SALT dynamics on the initial level set of the enstrophy Casimir.
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The nature of stochastic coadjoint motion for LA SALT

Remark

One may regard the expected vorticity equations for 2D LA SALT as a
dissipative system embedded into a larger conservative system.

From this viewpoint, the interaction dynamics of the two components of
the full LA SALT system dissipates the enstrophy of the mean vorticity by
converting it into fluctuations which increase the variance, while preserving
the mean total enstrophy.

This dynamics occurs because the total (mean plus fluctuation) vorticity
field is being linearly transported along the mean velocity, while the mean
vorticity field is decaying in 2D dissipative motion.

This is the nature of stochastic coadjoint motion for LA SALT.
Namely, the Casimirs are preserved by the full LA SALT dynamics, while
the equations for the expected dynamics contain dissipative terms.
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SALT and LA SALT Burgers equation

Choosing `(ut) = 1
2

∫
S1 |ut |2 dx yields the 1D LA SALT Burgers equation

dut + E [ut ] ∂xu dt +
∑
k

ξ(k)∂xut ◦ dW (k)
t = 0 ,

dut + E [ut ] ∂xu dt +
∑
k

ξ(k)∂xutdW
(k)
t =

1
2

∑
k

ξ(k)∂x(ξ(k)∂xut).

Theorem

LA SALT Burgers solutions are regular. (SALT Burgers solutions are not.)

The LA SALT expectation E [ut ] satisfies a viscous Burgers equation,

∂tE [ut ] + E [ut ] ∂xE [ut ] =
1
2

∑
k

ξ(k)∂x(ξ(k)∂xE [ut ]) .

This is regularization by non-locality in probability space.
Note: the Stratonovich Burgers evolves by transport by push-forward

ut(x) = φt∗u0(x), E [ut ] (x) = E [φt∗u0(x)] .
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Helicity preservation in SALT & LA SALT Euler equations

The Stratonovich LA SALT Euler fluid motion eqn and its vorticity eqn are

(d + LdXt )(ut · dx) = − dp , and (d + LdXt )(ωt · dS) = 0 ,

where d(ut · dx) = ωt · dS is the vorticity flux (a 2-form), ωt := curlut and
p is a scalar function. Since [Lv , d ] = 0, d2 = 0, and the advection
operator (d + LdXt ) obeys the product rule, the motion eqn implies

(d + LdXt )
(
(ut · dx) ∧ (ωt · dS)

)
= − dp ∧ (ωt · dS) = − d

(
p ωt · dS

)
,

(ut · dx) ∧ (ωt · dS) = (ut · ωt) d
3x , LdXt (Λ d3x) = div(ΛdXt) d

3x .

Hence, with Λ = ut · ωt , d(Λ d3x) = −div
(
ΛdXt + p ωt

)
d3x .

Under integration over the spatial domain of the flow,

d

∫
D
ut · curlut d3x = −

∮
∂D

(
ΛdXt + p ωt

)
· dS = 0 ,

for either vanishing or periodic boundary conditions on ∂D.
Thus, SALT & LA SALT Euler fluid equations preserve helicity.

D. D. Holm (Imperial College London) LA SALT CliMathParis IHP 2019 18 / 33



Helicity preservation in SALT & LA SALT Euler equations

The Stratonovich LA SALT Euler fluid motion eqn and its vorticity eqn are

(d + LdXt )(ut · dx) = − dp , and (d + LdXt )(ωt · dS) = 0 ,

where d(ut · dx) = ωt · dS is the vorticity flux (a 2-form), ωt := curlut and
p is a scalar function. Since [Lv , d ] = 0, d2 = 0, and the advection
operator (d + LdXt ) obeys the product rule, the motion eqn implies

(d + LdXt )
(
(ut · dx) ∧ (ωt · dS)

)
= − dp ∧ (ωt · dS) = − d

(
p ωt · dS

)
,

(ut · dx) ∧ (ωt · dS) = (ut · ωt) d
3x , LdXt (Λ d3x) = div(ΛdXt) d

3x .

Hence, with Λ = ut · ωt , d(Λ d3x) = −div
(
ΛdXt + p ωt

)
d3x .

Under integration over the spatial domain of the flow,

d

∫
D
ut · curlut d3x = −

∮
∂D

(
ΛdXt + p ωt

)
· dS = 0 ,

for either vanishing or periodic boundary conditions on ∂D.
Thus, SALT & LA SALT Euler fluid equations preserve helicity.

D. D. Holm (Imperial College London) LA SALT CliMathParis IHP 2019 18 / 33



Helicity preservation in SALT & LA SALT Euler equations

The Stratonovich LA SALT Euler fluid motion eqn and its vorticity eqn are

(d + LdXt )(ut · dx) = − dp , and (d + LdXt )(ωt · dS) = 0 ,

where d(ut · dx) = ωt · dS is the vorticity flux (a 2-form), ωt := curlut and
p is a scalar function. Since [Lv , d ] = 0, d2 = 0, and the advection
operator (d + LdXt ) obeys the product rule, the motion eqn implies

(d + LdXt )
(
(ut · dx) ∧ (ωt · dS)

)
= − dp ∧ (ωt · dS) = − d

(
p ωt · dS

)
,

(ut · dx) ∧ (ωt · dS) = (ut · ωt) d
3x , LdXt (Λ d3x) = div(ΛdXt) d

3x .

Hence, with Λ = ut · ωt , d(Λ d3x) = −div
(
ΛdXt + p ωt

)
d3x .

Under integration over the spatial domain of the flow,

d

∫
D
ut · curlut d3x = −

∮
∂D

(
ΛdXt + p ωt

)
· dS = 0 ,

for either vanishing or periodic boundary conditions on ∂D.
Thus, SALT & LA SALT Euler fluid equations preserve helicity.

D. D. Holm (Imperial College London) LA SALT CliMathParis IHP 2019 18 / 33



2D SALT Euler-Boussinesq (EB) system

Example (SALT 2D Euler-Boussinesq (EB) system)

The 2D SALT EB equations are given in Lie–Poisson form by

dF ={F , h}=−
∫
T2

δF/δµδF/δθ
δF/δD

Tad∗2µ 2 � θ 2 � D
L2θ 0 0
L2D 0 0

δ(dh)/δµ
δ(dh)/δθ
δ(dh)/δD

 d2x ,

with dxt := ut(xt) dt + ξ(xt) ◦ dWt , µ = Du · dx ⊗ d2 x and D = D d2 x∫ t

0
dh(µ, θ,D) ds =

∫ t

0

∫
T2

(
1

2D
|µ|2 + gDθy + p(D − 1)

)
d2x ds

+
∑
k

∫ t

0

〈
µ(x , t) , ξk

〉
X
◦ dW k

s ,

δ(dh)

δµ
= dxt ,

δ(dh)

δθ
= gDy ,

δ(dh)

δD
= gθy + p − 1

2 |u|
2
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The 2D SALT Euler–Boussinesq (EB) system

The Lie–Poisson form yields the 2D SALT EB system:2

du + u · ∇u dt +
∑
k

ξk · ∇u ◦ dW k
t +

∑
k

uj∇ξjk ◦ dW k
t

= −∇(p − |u|2/2) dt + gθŷ dt,

dθ + u · ∇θ dt +
∑
k

ξk · ∇θ ◦ dW k
t = 0,

dD + div(Du) = 0 and D = 1 =⇒ divu = 0.

2Note that for EB the x-y plane is a vertical slice,
with ŷ in the vertical direction, [AOBdLHT19].

D. D. Holm (Imperial College London) LA SALT CliMathParis IHP 2019 20 / 33



2D LA SALT Euler-Boussinesq (EB) system

The 2D LA SALT EB equations are given using the same Lie–Poisson
matrix operator as for 2D SALT EB by

d

µθ
D

 =

ad∗2µ 2 � θ 2 � D
L2θ 0 0
L2D 0 0

E [δ(dh)/δµ]
E [δ(dh)/δθ]
E [δ(dh)/δD]

 ,
with dXt := E [ut(x)] dt + ξ(x) ◦ dWt this becomes

d

µθ
D

 =

ad∗2µ 2 � θ 2 � D
L2θ 0 0
L2D 0 0


 dXt

gyE [D]

gyE [θ] + E
[
p − 1

2 |u|
2
]
 .

The Casimir functionals for this Lie–Poisson matrix operator are given by

CΦ =

∫
DΦ(θ) d2x ,

for any differentiable function Φ.
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Stratonovich form of LA SALT EB

Since µ = u ·dx ⊗D d2 x and D = D d2 x , we denote µ/D = u ·dx =: u[.

The Stratonovich form of LA SALT EB equations may be expressed as

du[ +LE[u]u
[ dt +

∑
k

Lξku
[ ◦ dW k

t

=− d
(
E
[
p − 1

2
|u|2
] )

dt + gE [θ] dy dt − gy d(θ − E [θ]) dt ,

dθ +LE[u]θ dt +
∑
k

Lξkθ ◦ dW k
t = 0 , ∇ · E [u] = 0.

where Lvu[ = (v j∂jui + (∂iv
j)uj)dx i =: (LTv ut)idx i and Lvθ = v · ∇θ.
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Itô form of LA SALT EB

Upon passing to the Itô formulation, the LA SALT EB system becomes

du[ + LE[u]u
[ dt +

∑
k

Lξku
[ dW k

t = −d
(
E
[
p − 1

2 |u|
2
] )

dt + gE [θ] dy dt

− gyd(θ − E [θ]) dt +
1
2

∑
k

L2
ξk
u[ dt,

dθ + LE[u]θ dt +
∑
k

Lξkθ dW k
t =

1
2

∑
k

L2
ξk
θ dt , ∇ · E [u] = 0.

The composition of Lie derivatives is, for example, Lξk (Lξkθ) =: L2
ξk
θ.

Taking expectation produces the PDE system,

∂tE
[
u[
]

+ LE[u]E
[
u[
]

= − d
(
E
[
p − 1

2 |u|
2
])

+ gE [θ] ŷ +
1
2

∑
k

L2
ξk
E
[
u[
]

∂tE [θ] + LE[u]E [θ] =
1
2

∑
k

L2
ξk
E [θ] .
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Vorticity representation of 2D LA SALT EB

In terms of vorticity ω = ẑ · curlu, the 2D LA SALT EB equations become

dω + LE[u]ω dt +
∑
k

Lξkω ◦ dW k
t = g(∂xθ) dt ,

dθ + LE[u]θ dt +
∑
k

Lξkθ ◦ dW k
t = 0 .

Since the area element dx ∧ dy is constant for 2D incompressible planar
flow, the Lie derivatives above of the vorticity ωdx ∧ dy are given by, e.g.,
Lξ(ωdx ∧ dy) = (ξ · ∇ω)dx ∧ dy and (∂xθ)dx ∧ dy = dθ ∧ dy .

The equations for the expectations (EBX) form a closed PDE sub-system,

∂tE [ω] + LE[u]E [ω] =
1
2

∑
k

L2
ξk
E [ω] + g∂xE [θ] ,

∂tE [θ] + LE[u]E [θ] =
1
2

∑
k

L2
ξk
E [θ] .

Theorem ([AOBdLHT19])

If EBX eqns are well-posed, so are the linear EB fluctuation transport eqns.
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Fluctuation dynamics for 2D LA SALT EB

The fluctuations ω′ := ω − E [ω] and θ′ := θ − E [θ] satisfy the equations:

dω′ + LE[u]ω
′ dt +

∑
k

Lξkω dW k
t =

1
2

∑
k

L2
ξk
ω′ dt + g(∂xθ

′) dt ,

dθ′ + LE[u]θ
′ dt +

∑
k

Lξkθ dW k
t =

1
2

∑
k

L2
ξk
θ′ dt .

The differential of the second equation leads to the following formula for
the dθ′ fluctuation in the first equation, (∂xθ)dx ∧ dy = dθ ∧ dy ,

d(dθ′) + LE[u](dθ
′) dt +

∑
k

Lξk (dθ) dW k
t =

1
2

∑
k

L2
ξk

(dθ′) dt ,

which is needed to complete the analysis of the fluctuation dynamics.

Thus, the system is closed, but the analysis of its variance dynamics is not
as straight-forward as for the case of planar vorticity dynamics.
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What is the next step?

Hamilton’s principle
√

+
Multi-time fast-slow homogenization

√

→
Stochastic decomposition

√

+
Kunita’s Itô-Wenzell (KIW) formula

√

→
Eulerian fluid SPDEs with stochastic transport

√

What is the next step?
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What’s next? Do these ideas apply to climate modelling?

“Climate is what you expect. Weather is what you get.” 3

There are many questions regarding climate whose answers
remain elusive.

For example, there is the question of determinism; was it
somehow inevitable at some earlier time that the climate now
would be as it actually is?

An almost intransitive system is one that can undergo two or more distinct
types of behaviour, and will exhibit one type for a long time, but not
forever . . . . Can we derive a stochastic almost intransitive system?

3Lorenz, E. N., 1995: Climate is what you expect. Unpublished, available at
http://eaps4.mit.edu/research/Lorenz/Climate_expect.pdf

Lorenz, E. N., 1976: Nondeterministic theories of climatic change.
Quaternary Research, 6(4), 495-506.

Daron, J.D. and Stainforth, D.A., 2013. On predicting climate
under climate change. Environmental Research Letters, 8(3), p.034021.
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One candidate is Lagrangian Averaged (LA) SALT

The LA SALT equations substitute ut → E [ut ] in the Lagrangian path∮
C
(
dxt=utdt+ξ(x)◦dWt

)ut · dx =⇒
∮
C
(
dXt=E[ut ]dt+ξ(x)◦dWt

)ut · dx .

For example, in the Euler fluid case the modified Kelvin theorem reads,

d

∮
C
(
dXt

) ut · dx =

∮
C
(
dXt

) [dut · dx + LdXt (ut · dx)
]

= 0 ,

where LdXt (ut · dx) denotes the Lie derivative of the 1-form (ut · dx) with
respect to the vector field dXt given by

dXt = E [ut ] dt +
∑
k

ξ(k)(x) ◦ dWt .

The corresponding Euler–Poincaré form of the equations is

d
δ`

δu
+ LdXt

δ`

δu
= E

[ δ`
δa

]
� a dt and da + LdXta = 0 .

D. D. Holm (Imperial College London) LA SALT CliMathParis IHP 2019 28 / 33



What does LA SALT tell us about extreme events?

When the expected Euler–Poincaré equations are written out in Itô form ,
with µ := δ`

δu , we find generalised NS and advected-diffusive equations

∂

∂t
E [µ] + LE[dXt ]E [µ]− 1

2

∑
k

Lξ(k)(Lξ(k)E [µ]) = E
[ δ`
δa

]
� E [a] + E [Fµ] ,

∂

∂t
E [a] + LE[dXt ]E [a]− 1

2

∑
k

Lξ(k)(Lξ(k)E [a]) = E [Fa] Climate .

These Climate equations predict the expectations E [µ] and E [a]

throughout the domain of flow. The Itô Weather equations for the
fluctuations are linear drift/stochastic transport relations:

dµ+ LE[dXt ]µ+
∑
k

Lξ(k)µ dWt − 1
2

∑
k

Lξ(k)(Lξ(k)µ) dt = E
[ δ`
δa

]
�a dt + Fµ

da + LE[dXt ]a +
∑
k

Lξ(k)a dWt − 1
2

∑
k

Lξ(k)(Lξ(k)a) dt = Fa Weather .

The variance EVOLVES : d
dtE

[
〈|µ− E [µ] |2〉

]
= RHS
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LA SALT RSW motion

LA SALT RSW motion is governed by the following nondimensional equations for
horizontal fluid velocity v = εu + R(x) with curlR(x) = 2Ω(x)ẑ and depth D,

dv − dXt × curlv +∇ψ dt +∇
(
v · ξ(x)

)
◦ dWt = 0 , dD +∇ · (DdXt) = 0 ,

with notation ψ = (D − B)/(εF) + ε|u|2/2, and variable Coriolis parameter 2Ω(x),
bottom topography B = B(x), Rossby number ε and rotational Froude number F ,

ε =
U0

f0L
� 1 and F =

f 2
0 L

2

gB0
= O(1) .

The dimensional scales (B0, L,U0, f0, g) denote equilibrium fluid depth, horizontal length
scale, horizontal fluid velocity, reference Coriolis parameter, and gravitational
acceleration, respectively.
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Homework #3.1 LA SALT RSW

(a) The SALT RSW Hamiltonian is obtained from the Legendre
transformation in Homework #2 to be

dh(µ,D) =

∫
1

2εD

∣∣µ− DR(x)
∣∣2 +

(D − B)2

2εF
dx1∧dx2 dt

+
∑
k

∫ t

0

〈
µ , ξk(x)

〉
X
◦ dW k

t .

The variational derivatives are

δ(dh)

δµ
= dXt and

δ(dh)

δD
=

(D − B)

2εF
+ ε−1|R|2 − |µ|

2

2εD2
.

(b) With dXt := E [ut(x)] dt + ξ(x) ◦ dWt the Lie–Poisson form of the
LA SALT RSW equations becomes

d

[
µ
D

]
=

[
ad∗2µ 2 � D
L2D 0

][ dXt

E
[
δ(dh)
δD

]] .
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Homework #3.2: What is LA SALT rigid body climate?

(1) The SALT Rigid Body equations may be expressed as

dΠ = Π× ∂(dh)

∂Π
with dh(Π) = h(Π) dt + Π · ξ ◦ dWt ,

for a constant ξ ∈ so(3) ≡ R3. Discuss the solutions. See arXiv:1601.02249

or https://doi.org/10.1007/s00332-017-9404-3.

(2) The LA SALT Rigid Body equations may be expressed as

dΠ = Π× E
[
∂h

∂Π

]
dt + Π× ξ ◦ dWt ,

for a constant ξ ∈ so(3) ≡ R3. Discuss the solutions. See [DHL19],

arXiv:1908.11481.
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What’s next? Over to you! Any questions?

[CGH17],[CFH17],[AOBdLHT19],[HT16],[DHL19],[ACH16],[Hol15]

Alexis Arnaudon, Alex L Castro, and Darryl D Holm.

Noise and dissipation on coadjoint orbits.
arXiv preprint arXiv:1601.02249, 2016.

D. Alonso-Oran, A. Bethencourt de Leon, D. D. Holm, and S. Takao.

Modelling the climate and weather of a 2d lagrangian-averaged euler-boussinesq equation with transport noise.
Submitted to J Stat Phys, Special volume on Mathematics of Planet Earth, arXiv:1909.00388, xxx:xx–yy, 2019.

Dan Crisan, Franco Flandoli, and Darryl D Holm.

Solution properties of a 3D stochastic Euler fluid equation.
arXiv preprint arXiv:1704.06989, 2017.

Colin J Cotter, Georg A Gottwald, and Darryl D Holm.

Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics.
arXiv preprint arXiv:1706.00287, 2017.

T. D. Drivas, D. D. Holm, and J.-M. Leahy.

Lagrangian averaged stochastic advection by lie transport for fluids.
Submitted to J Stat Phys, Special volume on Mathematics of Planet Earth, arXiv:1908.11481, xxx:xx–yy, 2019.

Darryl D Holm.

Variational principles for stochastic fluid dynamics.
In Proc. R. Soc. A, volume 471, page 20140963. The Royal Society, 2015.

Darryl D Holm and Tomasz M Tyranowski.

Stochastic discrete Hamiltonian variational integrators.
arXiv preprint arXiv:1609.00463, 2016.
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